Alexey Stakhov, Samuil Aranson/30.03.2011




Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry,

Bodnar’s Geometry, and Hilbert’s Fouth Problem



Part I. Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci Goniometry

Part II. A New Geometric Theory of Phyllotaxis (Bodnar’s Geometry)


Part III. An Original Solution of Hilbert’s Fourth Problem



Abstract

This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.